Oct. 20th, 2013

me_geneva: (Default)
Совершенно славная вещь. Ее стоило бы читать еще в школе. With love from Math - если одной фразой. Это прекрасное систематизированное изложение истории математики и физики, при чем явно с любовью. Отличная книга. Если вам хоть немного интересна математика, ее несомненно стоит прочесть. Она несколько переворачивает привычный взгляд и написана в очень верном русле: математика vs. ее применения к законам окружающего мира.
Несомненно, must read.

Суть проблемы сводилась к вопросу о взаимном притяжение трех тел. Если бы кому-нибудь удалось изобрести метод, позволяющий определять возмущающее действие третьего тела, то этим методом можно было бы воспользоваться и для определения возмущающего действия четвертого тела и так далее. Тем не менее точное решение общей задачи движения даже трех тел не удалось получить и поныне. Вместо того чтобы искать точное решение, математики стали создавать все более совершенные приближенные методы.

Глубина философских воззрений Канта, пожалуй, была превзойдена лишь ограниченностью его геометрических представлений. Прожив всю жизнь в Кенигсберге, в Восточной Пруссии, и не выезжая из него далее чем на шестьдесят километров, Кант тем не менее считал себя способным мысленно представить геометрию Вселенной.

Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные эти две прямые неограниченно встретятся с той стороны, где углы меньше двух прямых. Иначе говоря, если углы 1 и 2 в сумме меньше 180°, то прямые а и b, продолженные достаточно далеко, пересекутся. У Евклида были веские основания сформулировать аксиому о параллельных именно так, а не иначе. Он мог бы утверждать, например, что если сумма углов 1 и 2 равна 180°, то прямые а и b параллельны. Но Евклид явно боялся предположить, что могут существовать бесконечные прямые, которые никогда не пересекаются: любое утверждение о бесконечных прямых не подкреплялось опытом, в то время как аксиомы по определению должны были быть самоочевидными истинами о физическом мире. Но опираясь на свою аксиому о параллельных и другие аксиомы, Евклид доказал существование параллельных.

Открыв второй закон (равенства секториальных скоростей), Кеплер был необычайно рад. Хотя пользоваться вторым законом не так просто, как законом постоянства скоростей, совершенное открытие подкрепило глубочайшую убежденность Кеплера в том, что господь бог, создавая Вселенную, руководствовался математическими принципами. Бог действовал чуть более изощренно, чем предполагали предшественники Кеплера, но теперь со всей очевидностью было установлено, что скорости движения планет по орбитам подчиняются математическому закону.

Бунтари XVII в. обнаружили качественный, физический мир, познанию которого служило математическое описание. В наследство своим потомкам они оставили математический, количественный мир, в котором конкретность физического мира была заменена математическими формулами. Именно их трудами было положено начало той математизации природы,
которая процветает и поныне. Джеймс Джинс, заметивший в своей «Загадочной Вселенной» (1930), что «Великий архитектор Вселенной всѐ более представляется нам чистым математиком», опоздал со своей сентенцией по меньшей мере на два столетия.


Read more... )

Profile

me_geneva: (Default)
me_geneva

March 2022

S M T W T F S
  12345
6789101112
13141516171819
20212223242526
272829 3031  

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jul. 21st, 2025 04:22 am
Powered by Dreamwidth Studios